Applications of artificial intelligence in the analysis of academic performance in higher education: a systematic review

Main Article Content

Laura Astrid Quiroz Cerón
Melitza Graciela Alvites Leòn
Mario Aquino Cruz

Abstract

Abstract.  Artificial intelligence (AI) is constantly evolving, and its application in the analysis of academic performance is key to improving educational quality and supporting decision making. This research carries out a systematic review of the literature on the use of AI techniques, such as machine learning and deep learning, in the analysis of academic performance in universities and institutes. Articles published between 2020 and 2024 were reviewed in databases such as Science Direct, Scopus and IEEE Xplore. Studies show that algorithms such as KNN, deep neural networks (DNN), and decision trees are effective at identifying patterns in large volumes of data, with DNN achieving more effective accuracy. AI improves accuracy and efficiency in performance evaluation, and its implications, limitations, and future research directions are discussed.

Article Details

How to Cite
Applications of artificial intelligence in the analysis of academic performance in higher education: a systematic review. (2024). Micaela Revista De Investigación - UNAMBA, 5(2), 25-32. https://doi.org/10.57166/micaela.v5.n2.2024.153
Section
Artículos
Author Biographies

Laura Astrid Quiroz Cerón, Micaela Bastidas National University of Apurimac - Pe

Graduated in Computer Science and Systems Engineering from the Micaela Bastidas National University of Apurímac.

Melitza Graciela Alvites Leòn, Micaela Bastidas National University of Apurimac - Pe

Graduated in Computer Science and Systems Engineering from the Micaela Bastidas National University of Apurímac.

Mario Aquino Cruz, Universidad Nacional Micaela Bastidas de Apurímac - Pe

Professor at the Micaela Bastidas National University of Apurímac Peru, MSc. in Computer Science, researcher in the areas of educational computing, IoT, artificial intelligence and cybersecurity.

How to Cite

Applications of artificial intelligence in the analysis of academic performance in higher education: a systematic review. (2024). Micaela Revista De Investigación - UNAMBA, 5(2), 25-32. https://doi.org/10.57166/micaela.v5.n2.2024.153

References

B. Coppin, Artificial Intelligence Illuminated. Canada: Editorial Jones y Bartlett, 2004.

L. J. Gutiérrez Barahona, «IMPACTO DE LA INTELIGENCIA ARTIFICIAL EN EL RENDIMIENTO ACADÉMICO DE LOS ESTUDIANTES DE LA CARRERA TECNOLÓGÍAS DE LA INFORMACIÓN N», Unesum, Jipijapa, 2022.

E. Martín, L. A. García, Á. Torbay, y T. Rodríguez, «Estrategias de aprendizaje y rendimiento académico en estudiantes universitarios», International Journal of Psychology and Psychological Therapy, pp. 401-412, 2008.

G. M. Garbanzo Vargas, «Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública», Revista Educación, vol. 31, n.o 1, p. 43, abr. 2012, doi: 10.15517/revedu.v31i1.1252.

Y. Ocaña-Fernández, L. A. Valenzuela-Fernández, y L. L. Garro-Aburto, «Inteligencia artificial y sus implicaciones en la educación superior», Propósitos y Representaciones, vol. 7, n.o 2, pp. 536-568, ene. 2019, doi: 10.20511/pyr2019.v7n2.274.

H. Crompton y D. Burke, «Artificial intelligence in higher education: the state of the field», International Journal of Educational Technology in Higher Education, vol. 20, n.o 1, p. 22, abr. 2023, doi: 10.1186/s41239-023-00392-8.

C. S. González-González, «El impacto de la inteligencia artificial en la educación: transformación de la forma de enseñar y de aprender», Qurriculum. Revista de Teoría,Investigación y Práctica educativa, n.o 36, pp. 51-60, 2023, doi: 10.25145/j.qurricul.2023.36.03.

C. A. González-Trejo y K. J. Julián-Ortega, «La inteligencia artificial y su influencia en el rendimiento académico de los estudiantes», Revista Mexicana de Investigación e Intervención Educativa, vol. 3, n.o 1, pp. 37-44, ene. 2024, doi: 10.62697/rmiie.v3i1.69.

Horizonteeuropa.es, «Horizonte Europa: nuevo Programa Marco de la UE | Horizonte Europa».

B. Kitchenham, «Procedures for Performing Systematic Reviews», Keele, vol. 33, 2004.

F. A. Incio-Flores, D. L. Capuñay-Sanchez, y R. O. Estela-Urbina, «Modelo de red neuronal artificial para predecir resultados académicos en la asignatura Matemática II», Revista Electrónica Educare, vol. 27, n.o 1, pp. 1-19, dic. 2022, doi: 10.15359/ree.27-1.14516.

O. D. Castrillón, W. Sarache, y S. Ruiz-Herrera, «Predicción del rendimiento académico por medio de técnicas de inteligencia artificial», Formación universitaria, vol. 13, n.o 1, pp. 93-102, feb. 2020, doi: 10.4067/S0718-50062020000100093.

H. F. Mendoza Jurado, «Modelo de aplicación orientada a la Web 4.0 en el rendimiento académico del estudiante en Educación Superior», Educación Superior, vol. 8, n.o 2, pp. 39-48, sep. 2021, doi: 10.53287/tjzc9154ou50o.

P. Sokkhey y T. Okazaki, «Hybrid Machine Learning Algorithms for Predicting Academic Performance», International Journal of Advanced Computer Science and Applications, vol. 11, n.o 1, pp. 32-41, 2020, doi: 10.14569/IJACSA.2020.0110104.

M. Yağcı, «Educational data mining: prediction of students’ academic performance using machine learning algorithms», Smart Learning Environments, vol. 9, n.o 1, pp. 2-19, dic. 2022, doi: 10.1186/s40561-022-00192-z.

L. E. Contreras Bravo, N. Nieves-Pimiento, y K. Gonzalez-Guerrero, «Prediction of University-Level Academic Performance through Machine Learning Mechanisms and Supervised Methods», Ingeniería, vol. 28, n.o 1, p. e19514, nov. 2022, doi: 10.14483/23448393.19514.

I. O. Muraina, E. Aiyegbusi, y S. Abam, «Decision Tree Algorithm Use in Predicting Students’ Academic Performance in Advanced Programming Course», International Journal of Higher Education Pedagogies, vol. 3, n.o 4, pp. 13-23, ene. 2023, doi: 10.33422/ijhep.v3i4.274.

T. Ahajjam, M. Moutaib, H. Aissa, M. Azrour, Y. Farhaoui, y M. Fattah, «Predicting Students’ Final Performance Using Artificial Neural Networks», Big Data Mining and Analytics, vol. 5, n.o 4, pp. 294-301, dic. 2022, doi: 10.26599/BDMA.2021.9020030.

L. E. Contreras, H. J. Fuentes, y J. I. Rodríguez, «Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático», Formación universitaria, vol. 13, n.o 5, pp. 233-246, oct. 2020, doi: 10.4067/S0718-50062020000500233.

J. H. Guanin-Fajardo, J. Guaña-Moya, y J. Casillas, «Predicting Academic Success of College Students Using Machine Learning Techniques», Data (Basel), vol. 9, n.o 4, p. 60, abr. 2024, doi: 10.3390/data9040060.

E. Ahmed, «Student Performance Prediction Using Machine Learning Algorithms», Applied Computational Intelligence and Soft Computing, vol. 2024, n.o 1, ene. 2024, doi: 10.1155/2024/4067721.

K. Roy y D. Md. Farid, «An Adaptive Feature Selection Algorithm for Student Performance Prediction», IEEE Access, vol. 12, pp. 75577-75598, 2024, doi: 10.1109/ACCESS.2024.3406252.

B. K. Yousafzai et al., «Student-performulator: Student academic performance using hybrid deep neural network», Sustainability (Switzerland), vol. 13, n.o 17, sep. 2021, doi: 10.3390/su13179775.

S. Sarwat et al., «Predicting Students’ Academic Performance with Conditional Generative Adversarial Network and Deep SVM», Sensors, vol. 22, n.o 13, p. 4834, jun. 2022, doi: 10.3390/s22134834.

O. Ojajuni et al., «Predicting Student Academic Performance Using Machine Learning», 2021, pp. 481-491. doi: 10.1007/978-3-030-87013-3_36.

N. A. Butt, Z. Mahmood, K. Shakeel, S. Alfarhood, M. Safran, y I. Ashraf, «Performance Prediction of Students in Higher Education Using Multi-Model Ensemble Approach», IEEE Access, vol. 11, pp. 136091-136108, 2023, doi: 10.1109/ACCESS.2023.3336987.

N. M. Alruwais, «Deep FM-Based Predictive Model for Student Dropout in Online Classes», IEEE Access, vol. 11, pp. 96954-96970, 2023, doi: 10.1109/ACCESS.2023.3312150.

A. Nabil, M. Seyam, y A. Abou-Elfetouh, «Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks», IEEE Access, vol. 9, pp. 140731-140746, 2021, doi: 10.1109/ACCESS.2021.3119596.

A. Rico Páez, «Modelos predictivos progresivos del rendimiento académico de estudiantes universitarios», RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, vol. 12, n.o 24, may 2022, doi: 10.23913/ride.v12i24.1196.

J. E. Gamboa Unsihuay y J. W. Salinas Flores, «PREDICCIÓN DE LA SITUACIÓN ACADÉMICA EN ALUMNOS DE PREGRADO USANDO ALGORITMOS DE MACHINE LEARNING.», Perfiles, vol. 1, n.o 27, pp. 4-10, feb. 2022, doi: 10.47187/perf.v1i27.142.

Most read articles by the same author(s)