Comparison of Models based on convolutional neural networks: ResNet-50V2, MobileNetV2 and EfficientNetB0 in the detection of Malaria
Main Article Content
Abstract
Malaria remains one of the leading causes of mortality worldwide, disproportionately affecting the most vulnerable populations. Traditional malaria diagnosis, based on manual microscopy, is prone to human errors and is time-consuming, hindering timely detection. This study compares three convolutional neural network (CNN) models: ResNet-50V2, MobileNetV2, and EfficientNetB0, applied to the automatic detection of malaria-infected cells. Using a publicly available dataset of blood cell images, metrics such as precision, recall, F1-score, and accuracy were evaluated. The results show that EfficientNetB0 achieved the best performance, with a precision of 97.12% and a recall of 97.59%, outperforming ResNet-50V2 and MobileNetV2 in overall performance. While ResNet-50V2 presented comparable results, MobileNetV2, though less accurate, stood out for its computational efficiency, making it suitable for devices with limited resources. The findings suggest that model selection should depend on the balance between accuracy and available computational resources, with EfficientNetB0 being the most appropriate for automated medical diagnostic systems in environments with higher processing capacity, while MobileNetV2 is ideal for resource-constrained environments.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.
How to Cite
References
T. Jameela, K. Athotha, N. Singh, V. K. Gunjan, and S. Kahali, “Deep Learning and Transfer Learning for Malaria Detection,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/2221728.
“Organización Mundial de Salud.” Accessed: Oct. 01, 2024. [Online]. Available: https://www.who.int/es/campaigns/world-malaria-day/2024#:~:text=En%20el%20D%C3%ADa%20Mundial%20del,mundo%2C%20as%C3%AD%20como%20las%20medidas
E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, “A Novel Convolutional Neural Network Model for Malaria Cell Images Classification,” Computers, Materials and Continua, vol. 72, no. 3, pp. 5889–5907, 2022, doi: 10.32604/cmc.2022.025629.
H. Rinky, R. Bhuiyan, and H. Rahman, “Performance comparison of CNN architectures for detecting Malaria diseases,” 2020, Accessed: Sep. 22, 2024. [Online]. Available: https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/14725/16101252%2C%2016101127%2C%2016101063_CSE.pdf?sequence=1&isAllowed=y
“El mapa de la malaria en el mundo - Mapas de El Orden Mundial - EOM.” Accessed: Oct. 12, 2024. [Online]. Available: https://elordenmundial.com/mapas-y-graficos/incidencia-malaria-mundo/
P. S. Prasad, B. Sunitha Devi, M. Janga Reddy, and V. K. Gunjan, “A Survey of Fingerprint Recognition Systems and Their Applications,” Lecture Notes in Electrical Engineering, vol. 500, pp. 513–520, 2019, doi: 10.1007/978-981-13-0212-1_53.
Y. Dong et al., “Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells,” 2017 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2017, pp. 101–104, Apr. 2017, doi: 10.1109/BHI.2017.7897215.
A. Alqudah, A. M. Alqudah, and S. Qazan, “Lightweight deep learning for malaria parasite detection using cell-image of blood smear images,” Revue d’Intelligence Artificielle, vol. 34, no. 5, pp. 571–576, Oct. 2020, doi: 10.18280/ria.340506.
Ninni Singh, Amit Kumar, and Neelu Jyothi Ahuja, “Implementation and Evaluation of Personalized Intelligent Tutoring System,” 2019.
Z. Liang et al., “CNN-based image analysis for malaria diagnosis,” Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, pp. 493–496, Jan. 2017, doi: 10.1109/BIBM.2016.7822567.
M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, “Image analysis and machine learning for detecting malaria,” Apr. 01, 2018, Mosby Inc. doi: 10.1016/j.trsl.2017.12.004.
M. Kumar Gourisaria, S. Das, R. Sharma, S. S. Rautaray, and M. Pandey, “A Deep Learning Model for Malaria Disease Detection and Analysis using Deep Convolutional Neural Networks,” International Journal on Emerging Technologies, vol. 11, no. 2, pp. 699–704, 2020, [Online]. Available: www.researchtrend.net
“Malaria Cell Images Dataset.” Accessed: Oct. 13, 2024. [Online]. Available: https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria
H. K. Rinky, R. R. Bhuiyan, and H. T. Rahman, “Performance Comparison of CNN Architectures for Detecting Malaria Diseases,” Thesis, Brac University, Dhaka, 2020. Accessed: Oct. 13, 2024. [Online]. Available: https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/14725/16101252%2C%2016101127%2C%2016101063_CSE.pdf?sequence=1&isAllowed=y
T. B. Alakus and I. Turkoglu, “Comparison of deep learning approaches to predict COVID-19 infection,” Chaos Solitons Fractals, vol. 140, Nov. 2020, doi: 10.1016/j.chaos.2020.110120.
“Aprendizaje profundo o deep learning: Guía completa.” Accessed: Oct. 13, 2024. [Online]. Available: https://www.innovaciondigital360.com/i-a/deep-learning-que-es-el-aprendizaje-profundo-como-funciona-y-cuales-son-los-casos-de-aplicacion/
“colab.google.” Accessed: Oct. 13, 2024. [Online]. Available: https://colab.google/
Y. I. Sulistya, E. T. Br Bangun, and D. A. Tyas, “CNN Ensemble Learning Method for Transfer learning: A Review,” ILKOM Jurnal Ilmiah, vol. 15, no. 1, pp. 45–63, Apr. 2023, doi: 10.33096/ilkom.v15i1.1541.45-63.